Bài Tập Lượng Giác 11

     

60 bài bác tập Hàm con số giác, Phương trình lượng giác gồm đáp án

Với 60 bài xích tập Hàm con số giác, Phương trình lượng giác có đáp án Toán lớp 11 tổng hòa hợp 60 bài tập trắc nghiệm gồm lời giải cụ thể sẽ giúp học sinh ôn tập, biết phương pháp làm dạng bài bác tập Hàm con số giác, Phương trình lượng giác từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

Bạn đang xem: Bài tập lượng giác 11

*

Bài 1: quý hiếm x ∈ (0,π) thoả mãn điều kiện cos2x + sinx – 1 = 0 là:

*

Lời giải:

Đáp án: A

cos2⁡x + sin⁡x-1 = 0 ⇔ -sin2⁡x+ sin⁡x=0

*

x ∈ (0,π) đề nghị x = π/2 (k=0).

Bài 2: Tập nghiệm của phương trình: 3sin2x - 2√3 sinxcosx - 3cos2x = 0 là:

*

Lời giải:

Đáp án: A

3sin2⁡x - 2√3 sin⁡xcos⁡x - 3 cos2⁡x=0 (1)

Xét cos⁡x=0 (1) ⇔ sin⁡x=0 (vô lý do: sin2⁡x +cos2⁡x=1)

Xét cos⁡x ≠ 0. Phân tách cả nhì vế của (1) mang đến cos2⁡x. Ta được :

3tan2⁡x-2√3 tan⁡x-3=0

*

Bài 3: Tổng các nghiệm của phương trình cos2x - √3sin2x = 1 trong các khoảng (0;π) là:

A. 0 B. π C. 2π D. 2π/3

Lời giải:

Đáp án: D

Ta tất cả

cos⁡2x - √3sin⁡2x=1

*

Bài 4: Giải phương trình sau:

*

*

Lời giải:

Đáp án: D

*

Vậy chọn D.

Bài 5: Nghiệm của phương trình 2(sinx + cosx) + sinxcosx = 2 là:

*

Lời giải:

Đáp án: A

Đặt t = sinx + cosx. Đk: |t| ≤ √2. Lúc đó

*

Ta bao gồm phương trình vẫn cho gồm dạng:

*
*

Bài 6: Phương trình cos(πcos2x) = 1 bao gồm nghiệm là:

*

Lời giải:

Đáp án: B

cos⁡(π cos⁡2x )=1

⇔ π cos⁡2x=k2π

⇔ cos⁡2x=2k. Để pt tất cả nghiệm thì |2k| ≤ 1⇔|k| ≤ 1/2

Mà k nguyên ⇒ k=0

*

Bài 7: Tập nghiệm của phương trình tanx + cotx -2 = 0 là:

*

Lời giải:

Đáp án: B

ĐK: x ≠ kπ/2 (k ∈ Z)

tan⁡x + cot⁡x - 2=0

*

Bài 8: Phương trình 3sin2x + msin2x – 4cos2x = 0 có nghiệm khi:

A. M = 4 B. M ≥ 4 C. M ≤ 4 D. M ∈ R

Lời giải:

Đáp án: D

3sin2⁡x + m sin⁡2x - 4cos2⁡x=0

Xét cos⁡x=0. PT vô nghiệm

Xét cos⁡x≠0. Chia cả 2 vế của PT đến cos2⁡x:

3 tan2⁡x+ 2m tan⁡x-4=0

Δ"=m2+12 > 0 ∀m

⇒ PT luôn luôn có nghiệm cùng với ∀m.

Bài 9: Tập nghiệm của phương trình

*

*

Lời giải:

Đáp án: A

Ta tất cả PT

*

⇔ 1 + sin⁡x + √3cos⁡x = 2

*

Bài 10: Giải phương trình: cos2x.tanx = 0.

*

Lời giải:

Đáp án: D

ĐK: x ≠ π/2+kπ (k ∈ Z)

*

*

Bài 11: Nghiệm của phương trình |sinx-cosx| + 8sinxcosx = 1 là:

*

Lời giải:

Đáp án: C

Đặt t = sinx - cosx. Đk: |t| ≤ √2. Lúc đó

*

Ta có: |t| – 4(1 - t2)=1

*
*

Bài 12: Điều khiếu nại của phương trình: cos3xtan5x = sin7x là:

*

Lời giải:

Đáp án: B

ĐKXĐ:

*

Bài 13: Tập nghiệm của phương trình 2cos25x + 3cos5x – 5 = 0 thuộc khoảng chừng (0;π) là:

*

Lời giải:

Đáp án: B

2cos2⁡5x+3 cos⁡5x-5=0

*

Bài 14: Nghiệm của phương trình sin2x – sinxcosx = 1 là:

*

Lời giải:

Đáp án: A

sin2⁡x-sin⁡x cos⁡x=1 (1)

Xét cos⁡x=0. Ta tất cả (1) ⇔ sin2⁡x=1 ⇔ x = π/2+kπ (k ∈ Z).

Xét cos⁡x≠0. Chia cả hai vế của PT đến cos2⁡x ta có:

tan2⁡x - tan⁡x = 1/cos2⁡x

⇔ tan2⁡x - tan⁡x = tan2⁡x + 1

⇔ tanx = -1

*

Bài 15: Điều kiện của phương trình:

*
là:

A. Cos2x ≠ 0 C. Cos2x ≥ 0

B. Cos2x > 0 D. Không xác minh tại đầy đủ x.

Lời giải:

Đáp án: C

ĐKXĐ: cos2x ≥ 0. Chọn C.

Bài 16: Tìm toàn bộ các cực hiếm thực của m đế phương trình sinx = m tất cả nghiệm.

A. M ≠ 1 C. M ≠ -1

C. -1 ≤ m ≤ 1 D. M > 1

Lời giải:

Đáp án: C

sin⁡x = m tất cả nghiệm ⇔|m| ≤ 1.

Bài 17: Một nghiệm của phương trình sin3x - cos3x = sinx –cosx là:

*

Lời giải:

Đáp án: A

PT ⇔ (sinx – cosx)( sin2x + cos2x + sinxcosx -1) = 0

*

Bài 18: Phương trình sinx = cosx gồm số nghiệm ở trong đoạn <0;π> là:

A.1 B.4 C.5 D.2

Lời giải:

Đáp án: A

Ta tất cả sinx = cosx

*

Do x ∈ <0;π> nên k = 0. Vậy chỉ có một nghiệm của phương trình thuộc <0;π>.

Bài 19: Tập nghiệm của phương trình sin4x – 13sin2x + 36 = 0 là:

*

Lời giải:

Đáp án: D

sin4⁡x - 13sin2⁡x + 36 = 0

*

Bài 20: Nghiệm của phương trình cos2x - √3sin2x = 1 + sin2x là:

*

Lời giải:

Đáp án: D

cos2⁡x - √3 sin⁡2x = 1 + sin2⁡x (1)

Xét cos⁡x = 0. PT vô nghiệm

Xét cos⁡x ≠ 0. Chia cả 2 vế của PT mang lại cos2⁡x ta có:

*
*

*

Bài 21: Tập nghiệm của phương trình √3 sinx+cosx=1/cosx nằm trong (0;2π) là:

*

Lời giải:

Đáp án: A

ĐK: cosx ≠ 0.

*

Bài 22: Tìm toàn bộ các giá trị thực của m đế phương trình cosx - m = 0 bao gồm nghiệm.

A. M ∈ (-∞,-1> C. M ∈ (1,+∞>

C. M ∈ <-1,1> D. M ≠ -1

Lời giải:

Đáp án: C

cos⁡x - m = 0 bao gồm nghiệm ⇔ cos⁡x = m bao gồm nghiệm ⇔ |m| ≤ 1. Lựa chọn C.

Bài 23: Tập nghiệm của phương trình tanx + cotx -2 = 0 là:

*

Lời giải:

Đáp án: B

*

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Ta gồm phương trình sẽ cho bao gồm dạng:

*

Bài 24: Phương trình sin2x = 1 gồm nghiệm là:

*

Lời giải:

Đáp án: D

Hướng dẫn giải. Ta có: sin2x = 1 ⇔ 2x = π/2 + k2π ⇔ x = π/4 + kπ, k ϵ ℤ.

Từ đó suy ra lời giải là D.

Bài 25: Số bộ phận thuộc tập nghiệm của phương trình 4sinx = 1/sinx trong tầm <0;2π}

A.2 B.4 C.6 D.8

Lời giải:

Đáp án: B

ĐK: sinx ≠ 0

4sin⁡x = 1/sin⁡x

⇔ sin2⁡x = 1/4

⇔ sin⁡x = ± 1/2

*

Bài 26: Số nghiệm của phương trình sin2x + 2sinxcosx + 3cos2x = 3 thuộc khoảng chừng (0; 2π)

A.1 B.2 C.3 D.4

Lời giải:

Đáp án: C

sin2⁡x + 2 sin⁡xcos⁡x + 3 cos2⁡x=3

Xét cos⁡x = 0. PT vô nghiệm

Xét cos⁡x ≠ 0. Chia cả hai vế của PT đến cos2⁡x ta có:

tan2⁡x + 2 tan⁡x+3 = 3 tan2⁡x+3

⇔ tan2⁡x - tan⁡x = 0

*

Bài 27: Phương trình (m + 2)sinx – 2mcosx = 2(m + 1) bao gồm nghiệm khi:

*

Lời giải:

Đáp án: A

PT đã đến

*

⇔ 4(m+1)2 ≤ (m+2)2 + 4m2

⇔ mét vuông + 4m ≥ 0

*

Bài 28: Số nghiệm của phương trình sin(2x – 40º) = 1 cùng với -180º 3x + sin3x = sinx + cosx là:

*

Lời giải:

Đáp án: B

cos3x + sin3x = sinx + cosx ⇔ (sinx + cosx) (1 – sinxcosx) = 0

*

Bài 30: Phương trình sin2 (x/3) = 1 bao gồm nghiệm là:

*

Lời giải:

Đáp án: C

Ta có: sin2 (x/3) = 1 ⇔ cos2 (x/3) = 0 ⇔ x/3 = π/2 + kπ

*

*

Bài 31: trong khoảng (0;2π) phương trình cot2 x-tan2 x=0 tất cả tổng những nghiệm là:

A. π B.2π C. 3π D. 4π

Lời giải:

Đáp án: D

*

cot2⁡x-tan2⁡x=0

⇔ cot2⁡x= tan2⁡x

*

Trong (0,2 π) có những nghiệm: π/4 ,5π/4 ,3π/4 ,7π/4 và tổng các nghiệm là 4π. Lựa chọn D

Bài 32: Nghiệm của phương trình -2sin3x + 3cos3x – 3sinxcos2x – sin2xcosx = 0 là:

*

Lời giải:

Đáp án: A

-2 sin3x+3 cos3x-3 sin⁡x cos2⁡x-sin2⁡x cos⁡x=0

⇔ -2sin3x+3 cos3x-3 sin⁡x (2cos2⁡x-1 )-sin2⁡x cos⁡x=0 (1)

Xét cos⁡x=0. Ta gồm (1) ⇔-2sin3x+3 sin⁡x=0

*

Xét cos⁡x ≠ 0 phân tách hết cả 2 vế của (1) mang lại cos3x. Ta có

-2tan3x+3-6 tan⁡x+3 tan⁡x (tan2⁡x+1)-tan2⁡x=0

⇔ tan3x-tan2⁡x-3 tan⁡x+3=0

*

Bài 33: Tập nghiệm của phương trình sin2x - √3sinxcosx + cos2x = 0 là:

*

Lời giải:

Đáp án: C

sin2⁡x-√3 sin⁡x cos⁡x+ cos⁡2x=0

*

Bài 34: Phương trình nào sau đây có tập nghiệm trùng cùng với tập nghiệm của phương trình tanx = 1:

A.sinx = √2/2 B. Cosx = √2/2 C.cotx = 1 D. Cot2x = 1

Lời giải:

Đáp án: C

tan⁡x = 1 ⇒ cot⁡ x = 1

Bài 35: mang đến phương trình 3√2 (sinx+cosx)+2sin2x+4=0. Đặt t = sinx + cosx, ta được phương trình nào dưới đây?

A. 2t2 + 3√2 t+2=0 B. 4t2 + 3√2 t +4=0

C. 2t2 + 3√2 t-2=0 D. 4t2 + 3√2 t- 4=0

Lời giải:

Đáp án: A

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Phương trình sẽ cho bao gồm dạng:

3√2 t + 2(t2-1) + 4 = 0 ⇔2t2+ 3√2 t + 2 = 0. Lựa chọn A.

Bài 36: Phương trình 2cosx - √3 = 0 bao gồm tập nghiệm trong vòng (0;2π) là:

*

Bài 37: giá trị nào là nghiệm của phương trình tan3x.cot2x = 0

*

Lời giải:

Đáp án: D

*

tan⁡3x.cot⁡2x=0

*

Kết phù hợp với điều khiếu nại ta lựa chọn D.

*

Bài 38: đến phương trình 5sin2x + sinx + cosx + 6 = 0. Trong những phương trình sau, phương trình làm sao không tương tự với phương trình vẫn cho?

*

Lời giải:

Đáp án: D

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Phương trình đang cho bao gồm dạng:

5(t2-1)+t+6=0 ⇔ phương trình vô nghiệm. Lựa chọn D

Bài 39: Phương trình sin(πcos2x) = 1 gồm nghiệm là:

*

Lời giải:

Đáp án: D

Ta bao gồm sin(πcos2x) = 1 ⇔ π cos2x = π/2 + k2π, k ∈ ℤ

*

⇔ cos2x = 50% +2k, k ∈ ℤ. Do - 1 ≤ cos2x ≤ 1 với k ∈ ℤ bắt buộc k = 0 và cho nên phương trình đã cho tương đương với

cos2x = 50% ⇔ 2x = ±π/3 + k2π ⇔ x = ±π/6 + kπ. Vậy lời giải là D.

Bài 40: Số địa điểm biểu diễn những nghiệm của phương trình 2cos2x + 5cosx + 3 = 0 trê tuyến phố tròn lượng giác là?

A. 1 B. 2 C. 3 D. 4

Lời giải:

Đáp án: A

2cos2⁡x+5 cos⁡x+3=0

*

Bài 41: Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình? sin2 x+ √3 sinxcosx=1

*

Lời giải:

Đáp án: D

sin2⁡x+√3 sin⁡x cos⁡x=1

*

Bài 42: Số nghiệm của phương trình sin2x + √3cos2x = √3 trên khoảng chừng (0, π/2) là?

A. 1 B. 2 C. 3 D. 4

Lời giải:

Đáp án: A

sin⁡2x+ √3 cos⁡2x=√3

*

Bài 43: Số nghiệm của phương trình là:

A.1 B.2 C.3 D. vô số.

Lời giải:

Đáp án: B

*

Bài 44: bao gồm bao nhiêu quý hiếm nguyên của thông số m nhằm phương trình sinxcosx – sinx – cosx + m = 0 bao gồm nghiệm?

A.1 B. 2 C. 3 D.4

Lời giải:

Đáp án: A

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Phương trình đang cho bao gồm dạng:

(t2-1)/2 - t + m = 0 ⇔ t2- 2t + 2m - 1 = 0 (2). Ta gồm ∆’ = 2 – 2m.

Để phương trình vẫn cho gồm nghiệm thì phương trình (2) phải gồm nghiệm với trị tuyệt đối hoàn hảo của nghiệm bé dại hơn √2

*

m nguyên bắt buộc m = 1.

Bài 45: Phương trình cos(x/2) = - 1 gồm nghiệm là:

A.x = 2π + k4π, k ∈ ℤ.

B.x = k2π, k ∈ ℤ.

C.x = π + k2π, k ∈ ℤ.

D.x = 2π + kπ, k ∈ ℤ.

Lời giải:

Đáp án: A

cos(x/2) = - 1 ⇔ x/2 = π + k2π ⇔ x = 2π + k4π. Chọn A

Bài 46: Tìm tất cả các quý hiếm thực của tham số m để phương trình tanx + mcotx = 8 gồm nghiệm.

A. m > 16 B.m 2⁡x + 8 tan⁡x + m = 0

Δ" = 16-m. Để pt có nghiệm thì Δ" ≥ 0 ⇔ m ≤ 16.

Bài 47: mang đến phương trình cos2 x-3sinxcosx+1=0. Mệnh đề nào sau đấy là sai?

A. x=kπ ko là nghiệm của phương trình.

Xem thêm: Rau Bó Xôi Nấu Gì Ngon - (32) Món Cải Bó Xôi Nấu Canh

B. Nếu phân tách hai vế của phương trình cho cos2 x thì ta được phương trình tan2 x-3tanx+2=0.

C. Nếu chia 2 vế của phương trình đến sin2 x thì ta được phương trình 2cot2 x+3cotx+1=0.

D. Phương trình sẽ cho tương tự với cos2x-3sin2x+3=0.

Lời giải:

Đáp án: C

Xét câu A :

*

⇒ PT ⇔ 1-0+1=0 (vô lý)

Vậy câu A đúng

Xét câu B : chia cho cos2⁡x. Ta tất cả

*

⇔ tan2⁡x-3 tan⁡x + 2 = 0. B đúng

Xét câu C. Phân tách cho sin2⁡x ta có

*

⇔ 2cot2⁡x-3 cot⁡x + 1 = 0. Sai

Chọn C

*

Bài 48: Tìm tất cả các cực hiếm thực của tham số m nhằm phương trình cosx + sinx = √2(m2 + 1) vô nghiệm.

A. m ∈ (-∞;-1)∪(1; +∞) B. m ∈ <-1,1>

C. m ∈ (-∞; +∞) D. m ∈ (-∞;0)∪(0; +∞)

Lời giải:

Đáp án: D

*

Để PT vô nghiệm thì m ≠ 0. Lựa chọn D.

Bài 49: Tổng những nghiệm của phương trình tan5x – tanx = 0 trên nửa khoảng

A. π B.2 π C. 3π/2 D. (5 π)/2.

Lời giải:

Đáp án: C

*

Bài 50: từ phương trình 5sin2x – 16(sinx – cosx) + 16 = 0, ta tìm kiếm được sin(x - π/4) có giá trị bằng:

A. √2/2 B. -√2/2 C. 1 D. ± √2/2

Lời giải:

Đáp án: A

*

Bài 51: Phương trình cos23x = 1 có nghiệm là:

A.x = kπ, k ∈ ℤ.

B.x = kπ/2, k ∈ ℤ.

C.x = kπ/3, k ∈ ℤ.

D.x = kπ/4, k ∈ ℤ.

Lời giải:

Đáp án: C

cos23x = 1 ⇔ 3x = kπ ⇔ x = kπ/3 (k ∈ Z). Chọn C.

Bài 52: Tìm tất cả các quý hiếm thực của tham số m nhằm phương trình cos2x – (2m + 1)cosx + m + 1 = 0 gồm nghiệm trên khoảng chừng (π/2, 3π/2).

A. -1 2⁡x (2m+1) cos⁡x+m=0

*

Để PT gồm nghiệm bên trên (π/2, 3π/2)thì thì cosx 2 x+(m-2)sin2x+3cos2 x=2 gồm nghiệm?

A. 16 B. 21 C. 15 D. 6

Lời giải:

Đáp án: C

Xét cos⁡x = 0. Lúc ấy PT ⇔ 11.1=2 (vô lý)

Xét cos⁡x ≠ 0. Phân chia cho cos2⁡x . Ta được :

11 tan2⁡x + 2(m-2) tan⁡x + 3 = 2 tan2⁡x + 2

⇔ 9tan2⁡x + 2(m-2) tan⁡x + 1 = 0

Để PT tất cả nghiệm ⇔ ∆"=(m-2)2-9 = m2-4m-5 ≥ 0

*

m ∈ <-10,10>,m nguyên ⇒ gồm 15 giá chỉ trị. Chọn C.

Xem thêm: Hướng Dẫn Cách Viết Mở Đầu Nhật Ký Cá Nhân Qua 4 Bước Đơn Giản

Bài 54: tất cả bao nhiêu cực hiếm nguyên của tham số m trực thuộc đoạn <-10; 10> nhằm phương trình ( m + 1)sinx – mcosx = 1 – m bao gồm nghiệm.